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These set of slides were originally written for the PROSPECT 
collaboration who needed to transport the detector from New Haven to 
Knoxville. They are certainly of general interest to anyone who wants to 
get the basic understanding behind vibration analysis



Problem
• We need to transport a 10 ton object of dimension 2 x 2 x 2 

meters over 1000 km. 

• A typical truck has mass of 14 tons. 

• Object will be placed on the truck bed on top of some 
shipping platform.  

• What are the basic considerations regarding vibration ? 

• Problem of vibrations and isolation is quite common in 
many large and small systems.  We will focus on the above 
situation just to allow a mental picture, but the formalism to 
be developed is applicable in many places. 



Reference material
• Any advanced text book on mechanics will have the topic. 

• Wikipedia has a nice description, but does not have the 
formalism : https://en.wikipedia.org/wiki/Vibration_isolation 

• Many texts will cover the mathematics, but keep it too general.  

• The best resource might be MIT lectures by Prof. Vandiver and 
Gossard.  

• https://ocw.mit.edu/courses/mechanical-engineering/2-003sc-
engineering-dynamics-fall-2011/ 

• We will briefly touch on modal analysis here, but my plan is to 
write a set of slides on this later. 

https://en.wikipedia.org/wiki/Vibration_isolation
https://ocw.mit.edu/courses/mechanical-engineering/2-003sc-engineering-dynamics-fall-2011/


Some assumptions
• We will assume that the isolation of the overall object is needed, and we ignore 

isolation of any components inside the object.  In fact, the same analysis can be 
performed for each element of the object. 

• Powerful software will perform a multidimensional analysis and identify various 
modes of vibration. Our goal here is to provide just enough understanding so that 
we can follow more sophisticated analysis.  

• The object will be placed on an isolation platform on the truck.  

• We assume a linear system. This means that if the truck shakes at a certain 
frequency then the object and all its parts will vibrate at the same frequency. this is 
the basis of Fourier analysis.  

• There are two issues: 

• What is the steady state response of the detector ? (we work on this first).  

• What is the response to a shock event ? 



It is good to imagine that the load is attached to an 
imaginary overhead line as it moves along the road to 
understand the impact of the suspension system. 
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First we make a visual picture



You can extend the imagination of isolation to inside of 
the object. The inside object continues on an imaginary 
line while everything around it is vibrating. 
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Simple 1 DOF system

k

c

m

x(t)
m d 2x
dt 2 + c dx

dt
+ kx = 0

 Set  x(t) = Xeiωt

−ω 2mX + iωcX + kX = 0    This yields a solution for ω

ω = -i c
2m

± k
m

1− c2

4mk

Set ξ= c
2mω n

, ω n
2 = k

m
 is the natural frequency 

ω = −iξω n ±ω n 1− ξ 2 ,  the complete solution is then 

x(t) = e−ξωnt (x0 Cos(ω dt)+
v0 + ξω nx0

ω d

Sin(ω dt))

where ω d =ω n 1− ξ 2  is called the damped frequency.  
If we assume small damping, then the intercept of this motion is 
the initial displacement x0  and the initial slope corresponds to ~v0
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This is a well known result that everyone should know



Simple forced system

k

c

m

Units     k: N/m,    c: N/m/s
f(t): applied force in N

m d 2x
dt 2 + c dx

dt
+ kx = f (t)

Fourier: x(t)⇔ X(ω ); f (t)⇔ F(ω )
−ω 2mX + iωcX + kX = F(ω )

X
F
= 1
k

1
(1−ω 2 /ω n

2 )+ 2i(ω /ω n )ξ
⎡

⎣
⎢

⎤

⎦
⎥

f(t)

x(t)

ω n
2 = k

m
ξ = c

2ω nm

Natural Freq = νn =
ω n

2π
Hz

Damping = ξ   is unitless
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ξ = 0, 0.2, 0.4, 0.6, 0.8,1.0

This is called a transfer function



Comments
• Best way to reduce response is to detune the 

natural frequency by a factor of ~3 compared to the 
driving frequency.  

• Factor of 3 detuning gets you factor 1/8 in response. 

• Driving excitation  in the steady state may have a 
wide spectrum.  

• Damping is needed in case of impulse to stop long 
term vibration at natural frequency.  



Floor vibration
m

kc
x(t)

y(t)

At equilibrium spring has to support force of mg
kδ = mg   where δ  is the motion after loading with mg

k = mg
δ

⇒ω n
2 = k

m
⇒ω n =

g
δ

Assume x(t) is the motion after reaching equilibrium. 
Actual frequency at maximum shifts with damping.

m d 2x
dt 2 + c dx

dt
+ kx = c dy

dt
+ ky

Fourier:   x(t)⇔ X(ω ) y(t)⇔Y (ω )
−ω 2mX + iωcX + kX = iωcY + kY

H (ω ) = X
Y

=
1+ 2i ω

ω n

ξ

1− ω 2

ω n
2 + 2i

ω
ω n

ξ
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Notice an important difference at larger values. Damping does not help
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Two degrees of freedom with f(t)

m1

k1c
x1(t)

k2

m2x2(t)

f(t)

m1
d 2x1

dt 2 + c dx1

dt
+ k1x1 + k2 (x1 − x2 ) = f (t)

m2
d 2x2

dt 2 + k2x2 − k2x1 = 0

In Fourier space 

−ω 2m1 + iωc + (k1 + k2 ) −k2
−k2 −ω 2m2 + k2
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First assume c = 0 to get the normal modes

solving for ω  gives

ω 2 = 1
2

k1 + k2

m1

+ k2

m2

± (−4k1k2m1m2 + (k2m1 + k1m2 + k2m2 )2 )1/2

m1m2

⎡

⎣
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⎤

⎦
⎥

Ratio of amplitudes for the two modes are 
X2

X1

= −ω 2m1 + k1 + k2

−k2

Here one plugs in the two eigenvalues of ω +  and ω −

We also define ω1
2 = k1

m1

 ; ω 2
2 = k2

m2

Calculate these for 
special cases



Some parameters
• Mass of truck trailer m1 =15000 kg

• Mass of object+platform m2=10000 kg

• Assume that the weight of the load compresses the truck spring by δ;

• For example,  δ ~ 0.1 m for truck then k1= m1g/δ~1.5 ×106 N/m

• Truck suspension could be much stiffer k1=1.5×107 N/m (frequency = 
Sqrt(k1/m1)/2Pi = 1.59 Hz — 5.0 Hz ). For modern trucks this can be 
adjustable.  

• If δ ~ 0.05 m for just the detector on the truck then k2= m2g/δ~2.0 ×106 N/m

• Examine c/(2ω1m1) ranging from 0 to 10.  

• Typical values c~3×105 — 3×106 N/(m/s). 

• We will now use these to make a table for the normal modes for this 
system. 



m1 m2 k1 k2 ω1/2𝛑 ω2/2𝛑 ω+/2𝛑 ω- /2𝛑 (X2/X1)+ (X2/X1)-

1 1 1 1 1 1 (1+√5)/2 
=1.618

(√5-1)/2 
=0.618

(√5-1)/2 
=0.618

(-√5-1)/2 
=-1.618

15000 10000 1.5*106 2*106 1.59 2.25 3.10 1.15 1.11 -1.36

15000 10000 1.5*106 21*106 1.59 7.29 9.47 1.22 1.45 -1.03

15000 10000 15*106 21*106 5.03 7.29 10.03 3.66 1.12 -1.34

First row is a well known result from text books. 
All are in SI units. kg, N, m, sec, Hz etc. 

Normal modes



X1
F
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Transfer Function
ω1

2 = k1
m1

ξ1 =
c

2ω1m1

Damping = ξ1   is unitless
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Transfer function with no damping
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• This is the same plot, but now the masses are kept equal and the stiffness 
is changed to change the frequency ratio.  

• This is saying that it is better to have the frequency of the shipping 
platform higher (or stiffer) than the truck suspension.  

• k2/m2 > k1/m1 will reduce the motion of the overall detector with respect 
to the road.  But this will lower one of the frequencies to very low values 
causing big motions of the truck bed.  



Transfer function with damping

ω1 / 2π = 5.03Hz
ω 2 / 2π = 7.29Hz
k2 / k1 = 21/15
ξ1 = 0, 0.5, 1, 2
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There is considerable more detuning with 2 
degrees of freedom. Question:  what are 

parameters of a truck trailer ? 



Two degrees of freedom with floor vibration

m1

k1c
x1(t)
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dt 2 + c dx1

dt
+ k1x1 + k2 (x1 − x2 ) = c dy

dt
+ k1y

m2
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In Fourier space 
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Two DOF with floor vibration transfer function 
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ω1 / 2π = 5.03Hz
ω 2 / 2π = 7.29Hz
k2 / k1 = 21/15
ξ1 = 0, 0.5, 1, 2

It is better to keep damping to low values. As damping is made 
stronger the resonant frequency shifts to ω2 and the high 

frequency response goes back to single DOF. 

The frequencies chosen 
here are too high. 



2 DOF transfer function for truck bed
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zero at ω/ω2=1.  At the this frequency the truck bed has no oscillation, 
the road vibration is in anti-correlation to the platform vibration.  
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ω1 / 2π = 5.03Hz
ω 2 / 2π = 7.29Hz
k2 / k1 = 21/15
ξ1 = 0, 0.5, 1, 2



Motion Simulation

ω1 / 2π = 5.03Hz
ω 2 / 2π = 7.29Hz
m2 /m1 = 10Ton /15ton

ω1 / 2π = 2Hz
ω 2 / 2π = 3Hz
m2 /m1 = 10Ton /15ton

Recall that lower natural frequency means larger motion under initial 
load. This can lead to impractical parameters. 



Motion due to sudden step
Assume that y(t) =  u(t) =

1 if  t ≥ 0
0 if  t  <  0

⎧
⎨
⎪

⎩⎪
Then Y (s) =  L[y(t)]= 1/ s
h1y(s) and h2y(s) can be obtained from the Fourier transforms by: iω  →  s
x1(t) = L−1[h1y(s) iY (s)]
x1''(t) = L−1[s2 i h1y(s) iY (s)]          ...  Similarly for x2(t),  x2''(t)
For completeness... 

h1Y (s) = k1

k2

×
−(1+ s2

ω 2
2 )(2 s

ω1

ξ1 +1)

1− (1+ s2

ω 2
2 )(1+ k1

k2

+ m1

m2

s2

ω 2
2 + 2 k1

k2

s
ω1

ξ1)

h2Y (s) =
(2 s
ω1

ξ1 +1)

1+ 2ω 2

ω1

s
ω 2

ξ1 1+ s2

ω 2
2

⎡

⎣
⎢

⎤

⎦
⎥ + 1+ k2

k1

+ ω 2
2

ω1
2

⎡

⎣
⎢

⎤

⎦
⎥
s2

ω 2
2 +

ω 2
2

ω1
2
s4

ω 2
4



Motion of truck bed and platform after shock
of 1 m vertical ground motion
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Acceleration of truck bed and platform after shock
of 1 m vertical ground motion
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Conclusion
• Analysis of passive suspension was performed. 

• Rule of thumb for a single DOF suspension system: Factor of 3 detuning gets you factor 1/8 in 
response.

• For 2 DOF further suppression of  response is possible. (possibly another 1/10)

• Damping actually worsens the suppression of the response. 

• Damping is needed to reduce response to shock.  With optimum damping constant, motion can 
be damped within a single time of the lower oscillation frequency. 

• Sudden shock can result in high acceleration for brief periods of time. Higher damping causes 
higher acceleration. Softer spring constants can lower acceleration, but will cause large initial 
displacement. 

• In the 2 DOF system we showed how there are two normal modes and initial conditions 
determine how much of each mode contributed to the vibration.  We will develop this subject 
more in a later lecture.  

• Please use the Mathematica notebook provided with this to play with the model. Unfortunately, 
I did not think about putting enough commentary in the notebook.  


